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On-shell supercurrent multiplet for supergravity in 
six dimensions? 
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Abstract. We use unextended on-shell superfields to construct the Noether current 
multiplet for supergravity in six dimensions. The resulting current superfield is shown to 
generate all exotic currents (besides the canonical ones). This procedure therefore provides 
a systematic way to determine them. The invariant which reduces to the three-loop 
counterterm of O(2) supergravity is given in terms of the current superfield. 

1. Introduction 

It has been shown (Deser and Lindstrom 1980) that it is possible to construct a 
supersymmetry invariant in six-dimensional space-time as a functional of the unex- 
tended matter fields A and FF, which reduces to the matter part of the three-loop 
counterterm for O(2) supergravity via dimensional reduction (Scherk 1979). It was also 
demonstrated that this procedure of finding counterterms is much more convenient 
than a 4D approach, since one has fewer currents to deal with (Deser and Kay 1978, 
Sohnius 1979). However, the construction showed also that exotic currents may appear 
in higher dimensions, that is, currents which do not have 4D counterparts. Since it is not 
obvious from the beginning what the exotic currents look like, the question arises 
whether there is a systematic way to find these additional currents and how the current 
multiplet generalises. 

In order t'o answer this question, at least for the next more complicated case, the 
gravitational part of the three-loop counterterm, we use a formulation in terms of 6D 
superfields (Siege1 1979). This approach automatically guarantees that we obtain all 
members of the current multiplet. In performing this program we find, as a result, that 
the exotic matter current D,, defined by Deser and Lindstrom (1980) in fact appears as 
a component field of the current superfield, together with another exotic current which 
is new. We find an analogous structure of the current multiplet for the gravitational 
part. However, in constructing the invariant in question, it turns out that the matter 
contribution is reducible due to the equations of motion, and we end up with the same 
expression as Deser and Lindstrom (1980). 

t Work supported in part by German Academic Exchange Service (DAAD) and NSF Grant No PHY-78- 
09644. 
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2. Construction 

We begin our construction with the matter part. On shell? the supermultiplet contain- 
ing a spinor A and vector field F,,, can be represented by a 6D superfield W A $ ,  

wA = h A  -&"e a , ~  A - ieuwe a,iA + itW'ee(T"e a, a , ~  A 

+ ii((+@"e)AF,y +ieuAe(&Fu)A &F,, (1) 

6A A =-I 
with the supertransformations 

2 ( ~ I * " a  )AF,Ur 

SF,, = i(Eu[, &]A - a~,*Au,]a). 
- 

We found it very convenient to employ a 6D Weyl representation for the spinors 
(Akyeampong and Delbourgo 1973, Siegel 1979)§. The generalised 4 x 4 Pauli 
matrices UAB here represent only half of the total eight-dimensional space, which is 
sufficient however, since the corresponding Dirac spinors in this space appear only as 
helicity projections (Deser and Lindstrom 1980, Siegel 1979). The following proper- 
ties of the U'S are useful: 

aAB 1 ABCD OL 
{U", U P }  = 277"@, U = ? E  U CD, 

~ " A B U W C D  = 2EABCD9 

and we define 
-I [" 81 

U - 2 u  U . 
In this notation the covariant derivatives DA, DE and D, obey the algebra 

{DA, DE} = -~U"ABD,  

and the field W A  is a solution to 

u " A B [ D ~ ,  wBI = 0 ,  {DAY W E }  = 0, 

{DA, W E }  = IDA, WE}* [BA, {DE, wc}l = 2uaAB[Da, w"], ( 2 )  

{DA, [DE, {DC, wD}l} = 0, uOLABIDa, {DB, W"}] = 0. 

In the weak field limit (Deser and Kay 1978) we may also represent the gravitational 
multiplet by a 6D superfield WAa8 = - W A p ,  which we obtain from (1) by substituting 
A A + f A m 8 ,  the '? field strength', and F,,, -+ RaPI*,,, the 'Riemann tensor', with the 
supertransformations 

6fOL8 = -1 2(+ !-Au aRafiILY, 6RaPcLU = i(du[, a U ] f a P  - d [ l L ~ 8 ~ , p ) .  

We construct the current superfield in terms of the W fields as in the four-dimensional 
case (Ferrara and Zumino 1975), that is, the current multiplets are given by the real 
superfields V @  and VFep  defined by 

V @  = WCPW, v*",p = w("pu~wp)p 

+ In what follows all statements are modulo equations of motion, and we work in the weak field limit as 
defined in the work by Deser and Lindstrom (1980) and Deser and Kay (1978). 
$ Index convention: A,  B, C, . . . spinor indices, a, @, y..  . . 6D local indices, a, b, c, . . . 4 D  local indices, 
i, j ,  k ,  . . . internal indices. 
0 We use the flat space metric with positive signature and = +l. 
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for the matter and gravitational part respectively. These currents are conserved as a 
consequence of ( 2 ) .  

We give here explicitly the components of the gravitational multiplet defined in 
terms of the commutators of VFap with the covariant derivatives at 8 = 

[DA, V C L n p ( x ,  0113 J(”,p~(x), 

= 0:  

VFLnP(X, 0 )  = CCLaB(X), 

QUhAB{DA, [ D B ,  v’ap (x, o)]} E tAFa@(X), 

;(UAAB{D~, [DB, vFolp(X, o)]}+HC)= TAFap(X)+DACLup(X), (3) 

where 

tACLap = i aAfp(auclfp)p, 
TACLap = -i(a A -  f (a  P U CL fp)p - f ; a P ~ C L  aAfp)p )+R~a”PWRP)w~ + (1/3!)R~YPurWR~)YPurA,  

DACLap = i R  *(a”PuACL RP)”PLT - Z E  Rap,,. R *aphlLvP = 1 ACLWPUr 

CCLap and JWap are the axial current and supercurrent respectively. TACLaP contains the 
Bel-Robinson tensor, The currents tACLap and DAWap are exotic in the sense above. 
DAWaP in particular corresponds to DAW defined by Deser and Lindstrom (1980) for the 
matter part. All other components of VCLap can now be obtained from these, since all 
higher derivatives of VFap can be reduced to those already known by means of ( 2 ) .  We 
have for instance 

A CD (1/3!)EABCD[DA, { D B ,  [UC? vCLap]}] = U  [DA, [ D C ,  v”apl1 

or 

{ D A ,  [DB, {DC, [ D D ,  v”ap1}1} = VACD[DA, { D [ A ,  [ D B b  vCLa@l}l 

etc. The matter part is completely analogous. 
In order ’to construct an invariant I,,,,, which has after dimensional reduction the 

dimension of a three-loop counterterm containing in particular the square of the 
Bel-Robinson tensor, we have to square VCLap. However, it is clear from dimensional 
considerations as well as from the results above, that I,,,, does not occur as a last 
component of the superfield V2, but will be in general a collection of components of the 
&basis elements which are quadratic in 8. We follow again the procedure described by 
Siege1 (1979), and construct I,,,, by projecting the desired components of V 2  down to 
the first component of the superfield which consists of derivatives of VWup, that is terms 
like I,,,, - ( D A D B V ~ ~ ~ ) ~ .  In order to be an invariant, I,,,, = 5 d6xL should have the 
property a(I,,,,)/aeA = 0, which implies [DA, L] = 0 and [QA, L] = 0. 

Using the algebra ( 2 ) ,  we find I,,,, has the form 

where 
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For the matter part, Imatter can be reduced further since application of ( 2 )  leads to 
L4 = -&L1 in this case. This expression then agrees with the one obtained by Deser and 
LindstrGm (1980), that is the current DAF disappears. 

3. Reduction 

In order to show that I,,,, reduces to the 4D invariant of O ( 2 )  supergravity given by 
Deser and Kay (1978), we write all spinor expressions in Dirac notation, and with the 
representation of the 6D r-matrices as defined by Brink et a1 (1977), the field strength 
i(1 + r7)fgaac = f Y P  reduces to the only non-vanishing components 

( 4 D ) a b  

f+ab = [ ;:(4D)ab] 

where f*(4D)ab are complex 4D fields related to the O ( 2 )  fields by 

f* (4D)ab = (1/J2)(fLab +if:ab) 

and f i b  ( i  = 1, 2) are 4D Majorana spinors. In the same procedure R,,,s reduces to 

R a b c d  = R (4D) abcdt 

The reduction of the fermionic part as well as the spin-1 part of I,,, is similar to the 
Yang-Mills case. The result shows that I,,,, = - 4 8 A & [ 0 ( 2 ) ] ,  where A&?[O(2)] is the 
invariant found by Deser and Kay (1978). 

We explicitly demonstrate here the reduction of the pure spin-2 part of I,,,, which 
yields the square of the Bel-Robinson tensor. From (3) and (4) we learn that pure 
spin-2 contributions are contained only in Lz,  where they arise from T W Y a ~  and DFv,p 
terms. We denote this part of L2 by [L& and find that 

( 5 )  

R a b c 4  = (1/JZ) R a b c 5  = -(l/Ji) dCFaFD). 

[&]R = [ - 8 ( T  + 0 l 2 I ~  
= - 8 ( T a b c d T a b C d  +2T44cdT44cd + 2 D 4 5 c d D 4 5 c d )  

where 
Tabcd = R(:f(aRd)efb)+ r ) a b T 4 4 c d ,  

T 4 4 c d  = -$R(,efgRdjefg, 

D45cd = & * ( c e f g R d j e f g .  

At this point it is very convenient to introduce the curvature (Weyl) spinor XABCD 

(Penrose 1960) which is totally symmetric on shell. In terms of xABcD the various terms 
in (5) take the form 

1 R* ' f g R  1 
R ( a e f g R b ) e f g  = TxVab,  ( a  b ) e f g  = Z Y V a b ,  

R ( a e f ( C R b ) e P ) = T V a b V  X + 1 2 8 f f ( a  f f b j  ff ~ C f f  D D X A B  X A B  
1 cd 1 - A A -  B B  (c d )  , C D -  CD 

where x = &( ,yx + x i )  and y = -hi( ,y,y - 22). 

~2 E + p b c d r a ; d  = 

The square of the Bel-Robinson tensor is therefore given by 

2 5 6 x x f f  

and [ L &  becomes 

[ L 2 ] R  = -48T2. 
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We conclude that the gravitational contribution to the three-loop counterterm can 
be obtained from higher-dimensional representations after reduction, as well. In 
particular, the procedure given here provides a systematic way to determine all currents 
involved in the corresponding counterterms. An application to higher dimensions, 
especially to ten dimensions, seems to be straightforward, since the guiding Yang-Mills 
multiplet in this case has exactly the same form as in six and four dimensions (Gliozzi et 
a1 1977). 

In the eleven-dimensional case we have neither a Weyl representation nor a 
Yang-Mills multiplet. However, it should be possible to construct the corresponding 
on-shell superfield, which then allows the construction for a Noether current. 

After this work was completed, I received a paper by Howe and Lindstrom (1980) in 
which they find all three-loop counterterms for O ( N )  supergravity, N s 4, and a 
seven-loop counterterm for O(8) supergravity using 4D on-shell superfields as found in 
the work by Brink and Howe (1979). 
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